Here an example of my two lists and relative code:
df1 = data.frame(a = c(1,1,1,2,3,3,4,4,5,6,6,7,8,9,9,10))
df2 = data.frame(a = c(1,2,2,2,3,4,5,5,6,6,7,8,9,9,10,10,11))
lst = list(df1, df2)
lst_table = lapply(lst, function(x) data.frame(table(x$a)))
> class(lst_table[[1]]$Var1)
[1] "factor"
> class(lst_table[[2]]$Var1)
[1] "factor"
Because of my code purpose I need the column Var1
within each data.frame in the list to be a numeric vector.
Starting from How to convert a factor to an integer\numeric without a loss of information? I applied the following code to the single data.frames and it works:
> df1$a = as.numeric(levels(df1$a))[df1$a]
> df2$a = as.numeric(levels(df2$a))[df2$a]
> class(df1$a)
[1] "numeric"
> class(df2$a)
[1] "numeric"
But how can I apply the above to a list?
I tried:
lst_table = lapply(lst_table, function(y) {y$Var1 = as.numeric(levels(y$Var1))[y$Var1]})
but it does not work.
Any suggestion?
Thanks
Answer
I think the problem is that your function in your second lapply
is only returning the vector of the numeric factor levels, not your entire data.frame
. I believe the following should work:
foo <- function(y) {
y$Var1 <- as.numeric(levels(y$Var1))[y$Var1]
return(y)
}
lst_table <- lapply(lst_table, foo)
No comments:
Post a Comment